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Fluid-fluid binodals of binary hard-sphere mixtures are computed from the recently proposed fundamental
measure functional–mean spherical approximation closure of the two-component Ornstein-Zernike equation.
The results, especially in the dense fluid region that was not accessible by previous theoretical methods, are
compared with the corresponding ones for the one-component fluid of big spheres with effective potential
obtained from the same closure. The general trends are those expected for hard-sphere potentials but small
difference are detectable. The overall agreement found validates the equivalence of the two descriptions for
size ratios R=8.5 or greater.
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I. INTRODUCTION

The binary mixture of hard spheres �HSs� with large dif-
ference in size is the simplest model from which one can
address several fundamental questions in the physics of com-
plex fluids, including the purely “entropic” phase transitions,
the validity of the effective fluid approach, etc. This model
which retains only the geometrical asymmetry through the
diameter ratio R=D2 /D1 �1 is also the first step before a
more realistic modeling of actual mixtures. The case R�1 is
specially important for the theory since it provides, in the
simplest situation, a stringent test for simulations, integral
equations, or density functional theories. Besides, it may also
be directly relevant to the interpretation of the behavior of
pseudobinary mixtures of hard-sphere-like colloids, such as
sterically stabilized ones or charged ones at high ionic con-
centration. But despite several studies that brought valuable
information since the early work of Asakura-Oosawa �1� and
Vrij �2� on the “depletion” forces in colloid-polymer mix-
tures, the phase diagram of this basic model is not yet defi-
nitely established. There are of course several consistent in-
dications that the phase diagram of mixtures with R�10
should mainly consist in a broad fluid-solid coexistence do-
main, and that it should not show a stable fluid-fluid coex-
istence. Actually, this picture has been established—in the
effective one component approach—directly by simulations
�3,4�, and by using �5� the reference hypernetted chain
�RHNC� integral equation �6�. The same qualitative features
were also obtained in Ref. �7� from first order perturbation
theory, although the special features of the effective potential
make the latter approach less accurate in the dense fluid re-
gion �8�. In the true mixture approach, however, the situation
is more contrasted. On the one hand, the domain of low
packing fractions of the small spheres �1 is indeed accessible
by simulation ��i=

�
6

Ni

V Di
3 is the packing fraction of compo-

nent i, Ni is the corresponding number of particles, Di is their
diameter, and V is the volume�. In this case, the two routes
can be compared directly and they have been shown to be
equivalent �3�. The lower part of the fluid-solid coexistence
curve is thus firmly established. The same is, however, im-
possible in the domain of packing fractions ��1 ,�2�F-F cor-

responding to the metastable fluid-fluid phase separation pre-
dicted for the effective one component fluid, first because it
is not possible to sample in this domain the configuration
space of the big spheres �see, for example, Ref. �9�� for
R�1, despite some specialized simulation algorithms that
have been proposed �10–13�. Second, analytical calculations
based on standard closures of the multi-component Ornstein-
Zernike �OZ� integral equations are either strongly depen-
dent on the quality of the closure or they simply do not
converge �14,15�. In addition, the density functional theories
that are successful for describing the structure of inhomoge-
neous fluids �16� do not predict phase separation of bulk
fluids. If one imposes for this purpose the test particle con-
sistency, one goes back to the nonconvergence problem of
integral equations �17�. Finally, the phenomenological theo-
ries that can explore the domain ��1 ,�2�F-F such as free vol-
ume ones �18� or those using empirical equations of state
�see Ref. �19�� or virial expansions �see Ref. �20� and refer-
ences therein� are either mostly qualitative or sensitive to the
approximations �see also Refs. �17,21� for the former�. How-
ever, the consensus is that for sufficiently asymmetric HS
mixtures, the trend at low values of �1 should persist in the
domain of higher values relevant to the fluid-fluid metastable
transition, as suggested by some analytical or phenomeno-
logical approaches. More fundamentally, it is based on the
expectation that the worrisome many-body effects would not
be strong enough to make the binary mixture behave in a
significantly different way from its effective one-component
representation with pair interactions. Besides the qualitative
argument of the impossible overlap of more than two exclu-
sion spheres in the Asakura-Oosawa model at sufficiently
high R, partial tests �3,9,22,23� indeed show that these
should be negligible. It is, however, clear that all the previ-
ous data for true mixtures with R�1, including simulations
and analytical ones were indeed obtained for low packing
fractions �1 of the small spheres, or equivalently �1

b in the
reservoir �for R�1, �1

b is roughly speaking the packing frac-
tion in the free volume�. In this domain, say �1

b � 0.15 for
R =10, the effective fluid approach should indeed suffice
because the many-body effects are then expected to be un-
important. This is the case for the simulation data for the
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fluid-solid binodals �3� and for the solutes radial distribution
functions g22�r� �22� which both showed a good agreement
with the one-component description. The simulation data
were also obtained in Ref. �12� at low �1. We also recall that
until the beginning of the nineties, the consensus was that
hard spheres were miscible at all concentrations and diameter
ratios, even if the depletion effect was known for quite a long
time �1,2�. This conclusion was drawn from the analytical
solution of the Percus-Yevick �PY� closure obtained by Leb-
owitz and Rowlinson �24�. This question was revisited in
1991 after Biben and Hansen �14� suggested from structural
data computed with the Ballone, Pastore, Galli, and Gazzilo
�25� �BPGG� and the Rogers and Young �26� �RY� closures a
phase instability for R�5. Short after that, Rosenfeld �17�
computed from the compressibility route a “spinodal” by us-
ing his “fundamental measure functional” �16� �FMF� in the
density functional theory �DFT� to generate the bridge func-
tions �hereafter this will be referred to as the RHNC-FMF
closure and the corresponding version of DFT will be desig-
nated as the FMT�. Later, free energy calculations �15� with
the RY closure were also interpreted as corroborating an in-
stability of the fluid phase. These studies were, however, not
conclusive either because of a strong dependence on the spe-
cific closure used �spinodal �14,17�� and or because the no-
solution domain covers most of the relevant ��1 ,�2�F-F range
�binodal �15��. We finally mention other studies from the RY
closure relative to colloid-star polymers �27� and star poly-
mers mixtures �28� in the two- and one-component descrip-
tions. However, the situations investigated involved either
moderate asymmetry or low values of �1

b and are thus differ-
ent from those considered here �see also Ref. �29� for another
discussion of the RY closure for mixtures�. The many-body
effects should of course require relatively long range inter-
actions, as in charged colloids, for example. However, the
proof of the adequacy of the effective fluid approach will
remain, strictly speaking, incomplete until the relevant do-
main becomes explorable by simulation �30�. In the absence
of this proof, we show in this paper the existence of a fluid-
fluid phase separation of binary HS mixtures, in the same
region ��1 ,�2�F-F as for the effective fluid. This will be done
by using the special closure of the two-component mixture
OZ integral equation that we have recently proposed �31�. As
a corollary, this will extend to the nontrivial dense domain,
typically 0.35��1+�2�0.7 for R=10, the validation of the
effective one-component fluid with pair interactions ap-
proach, and confirm that the fluid-fluid transition is indeed
metastable. This paper is hence organized as follows: In Sec.
II, we present the theoretical method used to study the phase
diagram. The results for the binodals are presented in Sec. III
and a brief conclusion is given in Sec. IV.

II. THEORY

In this section, we present the method used to obtain the
phase diagram of the mixture, starting with the computation
of structural quantities. We first briefly recall the closure we
proposed �31� to this end. This was achieved by means of a
compromise between accuracy and reduction of the no-
solution domain, that made the range ��1 ,�2�F-F accessible

to the integral equation, and this with some confidence. We
thus need to supply the multicomponent OZ equations relat-
ing the total correlation functions hij =gij −1 to the direct
correlation functions �dcf� cij,

hij = cij + �
k

�kcik � hkj , �1�

where � designates a convolution product: �f � g��r�
=�dr�f�r��*g�r�−r� with a closure,

gij = exp�− �uij + hij − cij − bij� , �2�

involving some approximation for the bridge function bij
�with uij the interaction potentials, �=1/kBT where T is the
temperature�. In the original RHNC-FMF closure, all the
bridges functions in Eq. �2� are taken from the FMT �16�.
However, with this very accurate closure, the no-solution
domain covers �17� all the relevant ��1 ,�2�F-F range. In or-
der to reduce it, the full RHNC-FMF closure must be aban-
doned. By extending Rosenfeld’s analysis �16� of the conver-
gence of the RHNC-FMF equation, we thus proposed the
following modification �31�:

c11�r � D1� = c11
�0��r� + �g11

�1� − g11
�0��; g11�r 	 D1� = 0,

�3�

c12�r � D12� = c12
�0��r� + �g12

�1� − g12
�0��; g12�r 	 D12� = 0,

�4�

g22 = exp�− �u22 + h22 − c22 − b22� . �5�

c11
�0��r� and c12

�0��r� are the direct correlation functions obtained
from the free energy functional consistent �32,33� with the
equation of state of Boublik, Mansoori, Carnahan, Starling,
and Leland �BMCSL� �34�. The associated radial distribution
functions g11

�0� and g12
�0� are computed by Fourier transforms,

using the Ornstein-Zernike Eq. �1�. With g11
�0� and g12

�0� as input
in the density profile �DP� equation,

gti
DP�r� = expˆ− ��uti�r� + 
i,ex���i�r��;r� − 
i,ex���i���‰ ,

�6�

one computes g11
�1��r�=g11(�
11

HS��gi1
�0��r� ;r��) and g12

�1��r�
=g12(�
12

HS��gi2
�0��r� ;r��) �as indicated by the superscript �1�,

this corresponds to the first step in a pure DFT calculation�.
Here, �
it

HS=
i,ex
HS ���igit�r� ;r��−
i,ex

HS ���i��, where 
i,ex
HS is the

excess chemical functional and t is the test particle. For un-
like spheres, it is symmetrized �31� as

�
12 = ��2�
12
HS + �1�
21

HS�/��1 + �2� . �7�

The closure was designated as the “FMF-MSA” closure
since it combines Rosenfeld’s “fundamental measure func-
tional” with a mean spherical approximation �MSA� like clo-
sure for c11 and c12. It is, however, clearly distinct from the
latter. Note that the symmetrization �7� uses as weighting
factors the packing fractions instead of the concentrations
xi=Ni /�Ni. At least in the context of the modified closure,
this was found �31� to work better than other symmetriza-
tions such as Rosenfeld’s ansatz:
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b̄12 = �x1b21 + x2b12�/�x1 + x2� , �8�

or the alternative one,

b̄12 = �x1b12 + x2b21�/�x1 + x2� , �9�

that were both considered in our previous work �23�. We
recall here that in the test particle limit of the density profile
equation, the bridge function bit is obtained as

bit�r� = Bi���mgmt�r�;r�� , �10�

where the bridge functional Bi—relative to component i—is
a functional of all the pair distribution functions �PDFs� gmt
in the field of the test particle t. Comparison with simulation
and RHNC and DFT data has shown that this closures gives
a very accurate description of the structure �31�. With the
exception of the full RHNC-FMF closure from which it de-
rives, it is clearly superior to all the closure used so far to
study highly asymmetric mixtures �it is even more accurate
than the pure DFT �31��. Its major advantage is its much
smaller no-solution domain compared with the RY, BPGG,
or RHNC ones. This allowed us to explore the ��1 ,�2�F-F

domain and thus compute the fluid-fluid binodal. We recall
here that this significant reduction of the no-solution domain
was obtained by relaxing the “constraints” on the integral
equation through Eqs. �3� and �4�, while essentially preserv-
ing the numerical result obtained with the full �“con-
strained”� RHNC closure. Following standard methods �35�,
we performed the common tangent construction on the
isobaric g�T , p ,x2� curves with G�T , p ,x2 ,N=N1+N2�
=Ng�T , p ,x2� the Gibbs free energy, p the pressure, and x2

the big spheres concentration. g�T , p ,x2� was computed from
the virial route as g= f + p /� withf the Helmholtz free energy
per particle:

�g�T,p,x2� = 	
0

��P� Z���� − 1

��
d�� + Z��� + �f id��� . �11�

f id���=�ixiln�xi�+ln���−1 is the free energy per particle of
the ideal mixture and Z= p / ��kBT� is the compressibility fac-
tor. For hard spheres, it is obtained from the contact values of
the PDFs, gij�Dij� as Z=1+ 2

3���ijxixjDij
3 gij�Dij�. Equations

�1� and �3�–�5� must be solved for each state point of the
integration path in Eq. �11�. The method is thus time con-
suming but it involves no special difficulty as long as these
equations converge �see Ref. �15� for a similar procedure�.

The spinodal corresponds to the vanishing of � �2G
�x2

2 �
N,P,T

.
Its determination in the virial route �using Eq. �11�� is a
nontrivial numerical task and we do not undertake it here. In
contrast, it is readily obtained in the compressibility route
from the Fourier transforms c̃ij�k� of cij�r� using the �for-
mally� exact relation

Scc�k = 0� =
NkBT


 �2G

�x1
2 �

N,P,T

�12�

with Scc�k�=x1x2�x2S11�k�+x1S22�k�−2�x1x2S12�k�� where
Sij�k� are the partial structure factors. The spinodal corre-

sponds to the divergence of Scc�k� or equivalently via the OZ
equations to the equation

D�k = 0�  �1 − �1c̃11�k = 0���1 − �2c̃22�k = 0��

− �1�2c̃12
2 �k = 0� = 0. �13�

Since the vanishing of D�k=0� may actually occur beyond
the limit of the convergence domain, a practical criterion
used to diagnose a possible spinodal is the behavior of the
quantity �=x1x2 /Scc�k=0� . At fixed �1

b it shows an abrupt
variation with �2 near the spinodal, allowing thus its accurate
location by extrapolation �14,17�. This much faster method
is, however, subject to a possible thermodynamic inconsis-
tency of the specific closure used. Since our purpose here is
not a thorough discussion of the spinodal, we will discuss
below only the compressibility route.

Finally, the thermodynamics of the effective fluid is de-
termined by computing the effective-pair potential for big
spheres at infinite dilution from the the same closure. Taking
the limit �2→0 in Eq. �1� one gets

11 = c11 + �1c11 � h11. �14�

h11 is used the equation

21 = c21 + �1c21 � h11 �15�

to obtain h21 and c21 from which one computes

22 = c22 + �1c21 � h21. �16�

The effective potential is then

��ef f�r;
1� = ��22
HS − 22�r� + b22�r� . �17�

The RHNC closure for a one component fluid is then used to
compute the binodal corresponding to �ef f �see Ref. �5� for
details�. The correspondence with the binary mixture is then
made by directly solving the osmotic equilibrium equation


1��1
b� = 
1��1,�2� . �18�

The chemical potential 
1 for the one-component fluid was
taken from the Carnahan-Starling expression �34� and

1��1 ,�2� was obtained by numerical differentiation around
the known coexistence values of x2 as 
1=g�T , p ,x2�
−x2��g /�x2�T,P. From this procedure, we readily perform the
mapping ��1 ,�2�→ ��1

b, �2�. The converse ��1
b, �2�

→ ��1 ,�2� is more difficult numerically, but it can be esti-
mated by using expressions such as that proposed in Ref.
�36�. This is, however, not strictly consistent with the actual
theory used to obtain 
1��1 ,�2� for the binary mixture. We
will thus perform here only the first mapping.

III. RESULTS AND DISCUSSION

A. Spinodal

Before presenting the results for the binodal we briefly
discuss here the compressibility spinodal estimated from the
full RHNC-FMF closure. Figure 1�a� shows the evolution
with �2 of the parameter � used to diagnose the spinodal. Its
behavior is obviously dependent on the details of the calcu-
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lation. Besides the nonconvergence problem which compli-
cates the discussion, the compressibility route is found to be
very sensitive to minute changes in the different terms of Eq.
�13�. This includes the type of symmetrization, the precise
free energy functional, or the number of iterations as illus-
trated in Tables I and II. Near the no solution boundary, the
values of the structural quantities and hence of � are subject

to other numerical uncertainties �see the discussion in Ref.
�37� for one-component fluids or less asymmetric mixtures�,
such as the mesh size, etc. Here for R=10 we used N
=16 384 and dr=0.01D1 in order to minimize them. It seems
difficult to go beyond these values but they are sufficient for
the qualitative aspects discussed in this section. Spinodals
estimated from the the full RHNC closure are shown in Fig.
1�b�. For comparison with Rosenfeld’s calculation �17�, we
include the result obtained by always keeping in the closure
the bridge functions computed with the input correlation
functions cij

�0��r� and gij
�0��r� �first bridge cycle�. We note that

the “spinodal ” estimated in this way lies well below the
F-F binodal for the effective fluid and differs significantly
from the one estimated with the modified functional and a
different symmetrization of the bridge function b12. For all
these reasons we think that, as long as we lack a closure that
is both accurate and respects the consistency between the
various thermodynamic routes, the compressibility route is
not a viable one for studying the spinodal in highly asym-
metric mixtures. With the modified closure that is less sub-
ject to the nonconvergence limitation, it should be possible to
compute a virial spinodal. This, however, remains a difficult
numerical task �31�, that we leave for future work. In the
coming section, we will discuss the binodal computed from
the virial route only, essentially because of this great sensi-
tivity of the compressibility route.

B. Binodal

We first recall the challenge by showing in Fig. 2 the full
phase diagram of the effective fluid obtained by Monte Carlo
�MC� simulations �3� and from �5� the reference hypernetted
chain �RHNC� integral equation �6�, for the potential of Göt-
zelmann, Evans, and Dietrich �GED� �38� for R=10�. Note
that consistently with the version of Lado using the standard
RHNC free energy, as the RHNC-FMF used here �in contrast
with alternative treatments of the nonlocal term—see Ref.
�5� for details�, the more recent simulation data �30� suggest
that the critical value �1,c

b is somewhat overestimated by the

TABLE I. Components of the determinant D�k=0� for R=10
used to estimate the spinodal as in Ref. �17� from Eqs. �3�, �4� and
a similar equation for c22.

�1 �2 1−�1c11 1−�2c22 �1�2c12
2 D�k=0��

0.389 51.636 19.018 103 98.27 104 −6.99 102

0.25 0.390 52.059 19.276 103 100.38104 −3.07 102

0.391 52.486 19.538 103 102.54 104 1.02 102

TABLE II. Components of the determinant D�k=0� for R=10
from the RHNC-FMF closure with different bridges cycles and
symmetrizations. Lines 1–3: first bridge cycle and Eq. �8�; lines
4–6: fully converged RHNC-FMF calculation with same symmetri-
zation; lines 7–9: fully converged RHNC-FMF calculation with
symmetrization �9�.

�1 / �1−�2� �2 1−�1c11 1−�2c22 �1�2c12
2 D�k=0�

0.080 3.5008 74.633 257.90 3.372

0.16 0.081 3.4951 75.678 261.36 3.144

0.082 3.4819 76.714 264.43 2.681

0.080 3.5346 74.625 259.51 4.262

0.16 0.081 3.5353 75.675 263.28 4.251

0.082 3.5360 76.729 267.08 4.239

0.080 3.5373 74.334 262.94 5.251

0.16 0.081 3.5381 75.376 266.69 5.283

0.082 3.5389 76.422 270.45 5.316

FIG. 1. �a� Ratio �=x1x2 /Scc�0� for R=10 and �1
b=0.16 from

the RHNC-FMF closure with different bridges cycles and symme-
trizations. Dotted lines: first bridge cycle. Full lines: fully con-
verged RHNC-FMF calculation. In each set the lower curves are
obtained with the symmetrization �8� �see also Fig. 1 in Ref. �17�
�b� and the upper curves with the symmetrization �9��. �b� Esti-
mated compressibility spinodals for R=10 from the RHNC-FMF
closure. Dotted line: original free energy functional �17� and Eq.
�8�. Full line: modified functional �32,33� and Eq. �9�. The dashed
line shows the binodal of the effective fluid from Ref. �3�.
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method used in Ref. �3�. The point here is that the fluid-fluid
binodal lies completely inside the no-solution domain of the
original RHNC-FMF closure. This was the main motivation
of our search of a more flexible closure �31�.

The binodal for the binary mixture with R=10 obtained
from the FMF-MSA closure is compared with the corre-
sponding one in the effective fluid in Fig. 3, using the map-
ping ��1 ,�2�→ ��1

b, �2� from Eq. �18�. We first notice the
non-completely-trivial result that a fluid-fluid binodal is in-

deed predicted by the treatment of the two-component mix-
ture by the FMF-MSA closure. This binodal is similar to that
determined for the effective fluid, with FMF-MSA effective
potential treated with the RHNC closure. Its closeness with
the simulations �3� for the GED potential is subject to the
remark made above. Differences are, however, detectable at
high �2, and are possible for the critical value �2

c. The latter
is, however, difficult to estimate since the binodal is very flat.
The binodal is finally far from the compressibility spinodal
obtained in Ref. �17�. This is understandable from the rea-
sons discussed in the previous section. The binodals for
R=8.5 and R=10 are compared in Fig. 4. The ordering in
Fig. 4�a� is the one expected. Notice that in an exploratory
study for R=7 we could not find a binodal until high pres-
sure values at which the convergence becomes extremely
difficult. This absence remains, however, to be confirmed.
For R=8.5, the difference between the effective fluid and the
true binary mixture is more apparent, which is in line with
the expected increase of the many-body effects when the
asymmetry decreases, but both remain rather close. In the
absence of simulation data for the binodal, we compare in

FIG. 2. Phase diagram of a hard-sphere mixture with R=10.
Symbols: simulation data of Ref. �3�: circles: one-component fluid;
triangles: binary mixture. Lines: RHNC integral equation: full line:
fluid-solid binodal �5�, short dashed line fluid-fluid binodal from the
“Lado version” �5� �data from Ref. �5� are for the one-component
fluid with the GED potential of Götzelmann et al. �38��. The cross
shows the critical point obtained by simulation in Ref. �30�. Long
dashes: boundary of the no-solution domain �above this line� of the
RHNC-FMF closure �true mixture and mapping ��1 ,�2�→ ��1

b, �2�
from Ref. �36��.

FIG. 3. Fluid-fluid binodal of a hard-sphere mixture with
R=10 in the one-component representation. Circles: simulation data
of Ref. �3� with the GED potential, effective fluid. Full line: FMF-
MSA fluid-fluid binodal of the true mixture converted with the os-
motic equilibrium equation. Short dashes: fluid-fluid binodal of the
effective fluid with FMF-MSA effective potential. Long dashed line:
RHNC-FMF “spinodal” from Ref. �17�. Dotted line: estimated no-
solution boundary of the FMF-MSA closure.

FIG. 4. �a� Fluid-fluid binodal of hard-sphere mixtures with
R=8.5 and R=10 in the ��1 ,�2� plane. The upper curve is for
R=8.5. �b� Fluid-fluid binodal of hard-sphere mixtures with
R=8.5 and R=10 in the ��1

b, �2� plane. Full lines: FMF-MSA fluid-
fluid binodal of the true mixture as in Fig. 4�a�. Dotted curves with
symbols, corresponding one-component fluid with FMF-MSA effec-
tive potential. For comparison the fluid-solid boundary for R=10 is
shown by the dashed line.
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Table III some data for the compressibility factor and the
chemical potential with those of Ref. �12�. These data con-
firm the excellent behavior of the FMF-MSA closure. Be-
sides the good accuracy of the structural and thermodynamic
quantities computed with the closure in Eqs. �3�–�5�, it
would be very difficult to imagine that the agreement be-
tween the binodal computed for the effective fluid and the
binary mixture, in location, shape, and extent could be for-
tuitous.

IV. CONCLUSION

These results show directly a fluid-fluid binodal in highly
asymmetric HS mixture. Together with the direct comparison
of the two representations of HS mixtures in the low �1
regime �3� and the general arguments on the importance of
the many-body effects, this validates the effective fluid de-
scription of asymmetric HS mixtures, in the nontrivial dense
fluid region, and at the level of the thermodynamics. The
characteristics of the fluid-fluid binodal are thus very impor-
tant from the point of view of the theory of asymmetric mix-
tures. Besides, this result confirms the efficiency of the
method we have used. Now, since the fluid-fluid transition
should be metastable with respect to the fluid-solid one, there

is no direct practical exploitation of this result, unless one
reaches the metastability domain �for kinetic reasons for ex-
ample�, and this for truly hard-sphere-like colloids. It should
then be recalled that some experiments with mixtures of such
colloids indicate that the phase coexistence should indeed be
between a fluid and a solid �39� �ordered or amorphous�. On
the other hand, slight deviations from the ideal HS behavior
might have a significant effect on the phase behavior �40�—
see, for example, the glass transition �41� induced by the
addition of polymers in a mixture of HS-like particles.
Therefore as illustrated here for hard spheres, the exploration
of the dense fluid region remains an important task for a
complete description of the phase diagram, even when
non-HS contributions to the interactions are deemed to be
negligible. For more general interactions, and in the absence
of general criteria, the equivalence of both descriptions can
be assessed only by explicit calculations. In this respect, the
generic nature of the OZ equations/closure route should fa-
cilitate this task. Modifications in the spirit of the “relaxed
constraint” that motivated the proposed modification of the
RHNC closure remain, however, to be devised so as to over-
come a possible nonconvergence problem in a specific situ-
ation. Work on this aspect is currently in progress.
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